
 

 

  
  

KernelCare: Live Kernel 
Patching for Linux 

 
 

Technical White Paper 

 



 

 

The kernel is the most important part of any Linux system. It provides vital 

low-level functions to the entire system. Any security issues detected 

within it jeopardize the whole server, which in turn puts your customers 

and your revenue stream at risk. 

 

What is KernelCare? 

KernelCare is patch management software that automatically keeps your Linux kernel up to date 
with the latest security patches.  
No server rebooting or system downtime is necessary. It is fast, simple and easy to deploy, and 
can deliver complex patch configurations or customized kernels without affecting performance. It 
is available for all major Linux distributions. 
CloudLinux Inc. created KernelCare, fulfilling a need for targeted, low-overhead, security patch 
maintenance for Linux servers. 

Why is it needed? 
Linux has a long history of solid dependability, but like most modern operating systems, it is a large 

body of complex software that needs frequent updates. These updates often target perceived 

security weaknesses, which, if not resolved, can be exploited to compromise or debilitate your 

servers and data. 

For example, there were over 170 Linux kernel vulnerabilities detected last year1, some of which 

are fixed by individual patches. It is not uncommon for a Linux system to need monthly updates and 

reboots. 

There is a time lag between the detection of a vulnerability and its resolution by a patch update.  

This offers an unavoidable window of opportunity for malicious threat agents within which to target 

systems and exploit vulnerabilities. 

However, once a patch is released, its effectiveness in preventing attack is severely curtailed if the 

patch is not immediately applied. This entirely avoidable situation is where KernelCare comes in. It 

virtually eliminates the gap between patch issue and patch application, by installing patches 

automatically and without disruption to your core services. 

About KernelCare 
Our team consists of expert kernel developers whose primary role is to watch for kernel 

vulnerabilities and prepare patches for them. These are released as soon as possible, often much 

sooner than most Enterprise Linux vendor releases. We can do this, quickly, because our sole focus 

is on kernel security, and none of its other functionalities—we do not touch any kernel ABIs 

(Application Binary Interfaces). 

The traditional way of patching kernels can cause unwanted or undetected functional changes to 

your kernel. It may even introduce new or unknown security vulnerabilities. It can also change your 

kernel version, triggering security alerts or necessitating full regression testing of hosted 

applications. 

 
1 https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33 

Executive Summary 

https://cloudlinux.com/


 

 

All patch updates are fully auditable - all can be selectively pre-tested and approved for 

distribution and installation or abandoned and rolled back. This can be done at any time with zero 

impact.  
 

 

 

 

KernelCare runs as a service that live-patches a running Linux kernel. A small agent installed on a 

server applies binary kernel patches. These are downloaded directly from our repository, the main 

KernelCare Patch Server at http://patches.kernelcare.com. This server can be accessed directly 

or through a firewall (via a proxy server), or a local patch update server can be self-hosted to 

deliver patches. 

Patches are distributed as cumulative binary packages, custom-built for each supported kernel 

version, and each is GPG-key signed for security. 

When a patch is applied with KernelCare, a reboot of the system is not required. This is not the 

case when using traditional update tools (e.g. yum, apt-get). Instead, the Linux kernel is binary 

patched, in memory. Nothing else is touched, so there is no need to update system libraries or 

packages to keep in step with kernel changes. In fact, the official patch level does not change 

(see Security Compliance). 

Patching Servers 
Example 1: Direct Internet Access 

If your servers have access to the internet, even if via 

NAT, you can use the KernelCare Patch Server. 

 

Using key-based licensing, you can quickly deploy KernelCare on your servers with these two 

commands. 

curl -s https://repo.cloudlinux.com/kernelcare/kernelcare_install.sh | bash 
/usr/bin/kcarectl --register KEY 

Example Scenarios 

How It Works 

http://patches.kernelcare.com/


 

 

NOTE: Replace the word KEY with a license key string. 

Example 2: Access Via Proxy 

If your server has no direct internet access, a proxy server can be used. KernelCare uses these 

standard environment variables to configure the proxy. 

http_proxy=http://proxy.domain.com:port 
https_proxy=http://proxy.domain.com:port 

KernelCare will use these variables to connect to the internet via the proxy. The command to run 

it is the same as before. 

curl -s https://repo.cloudlinux.com/kernelcare/kernelcare_install.sh | bash 
/usr/bin/kcarectl --register KEY 

Example 3: No Internet Access (local ePortal) 

Servers without an internet connection can still take advantage of the automated patch service of 
KernelCare. 

 

KernelCare.ePortal is a patch server that runs internally, but outside of your firewall. It acts as a 
bridge between internal patch servers and the main KernelCare patch server. This approach is 
ideal for staging and production environments which need strict isolation from external networks, 
or which requires stricter control over the patches to be applied. You can use automated 
deployment to distribute the KernelCare agent to your servers. 



 

 

Automated Deployment 

Tools such as Ansible, Puppet, Chef, and others, can be used to automate the deployment of 

KernelCare. With these, you can: 

 Distribute the KernelCare agent package (only necessary for servers with no internet 

access). 

 Distribute the KernelCare agent configuration file /etc/sysconfig/kcare/kcare.conf). 

 Set environment variables. 

 Install the KernelCare agent (from either local or remote download servers). 

 Register KernelCare. 

 

For more details on automating KernelCare, see 

https://docs.kernelcare.com/kernelcare_enterprise/#deployment-automation 

 

 

 

Custom Patch Feeds 

KernelCare.ePortal lets you update different servers to different patch levels. With it you create 

custom patch feeds, each with their own patch combinations and configurations, and each with 

their own license keys. For example, you might create patch feeds for groups of servers, for 

specialized environments (e.g. testing, staging, QA), or for production release auditing.  

Examples of Servers in the ePortal GUI 

Specialized Patch 

Configurations 

https://www.ansible.com/
https://puppet.com/
https://www.chef.io/chef/
https://docs.kernelcare.com/kernelcare_enterprise/#deployment-automation


 

 

Patch Servers and the CloudLinux Network 

The CLN (CloudLinux Network) is where CloudLinux Inc. product licenses (including KernelCare) 

are managed. Each license can be given a sticky tag. This tag is the date at which licensed 

environments must be patched, given in DDMMYY format. Tagged servers will receive all patches 

released on or before the specified date. 

To set a sticky tag: 

1. Log into the CLN portal. 

2. Open the Edit Key Info dialogue by navigating to KernelCare Keys ⟶ Edit Key Info  

 

3. Fill out the Sticky tag field. 
4. On the server to be patched, run: 

/usr/bin/kcarectl --set-sticky-patch=KEY 

Alternatively, edit the file 

/etc/sysconfig/kcare/kcare.conf and add: 

STICKY_PATCH=KEY 

 

 NOTE: The word KEY is literal. Do not replace it with a 

license key string. 

 

 



 

 

Disabling Auto-Update 

You can disable the automatic update of environments by editing the file 

/etc/sysconfig/kcare/kcare.conf and setting the variable as shown below. 

AUTO_UPDATE=False 

The server will no longer get automatic patch updates. You must manually, or via automation 

tools, invoke the update with this command. 

/usr/bin/kcarectl --update 

Test and Delayed Patch Feeds 

As well as the standard (i.e. production) patch feed, the KernelCare patch server provides: 

 Test feed — the latest patches that have not completed all tests. 

 Delayed feeds — patches released within the past 12, 24 or 48 hours. These can be 

skipped and will not be loaded. 

 
Such feeds are configured in the file /etc/sysconfig/kcare/kcare.conf, by assigning one of these 
values to the PREFIX variable. 
 

 

 

 

 

 

Systems protected by KernelCare can be monitored with built-in methods, or by using the REST 

API together with third-party tools, such as Nagios or Zabbix. 

 

Monitoring via the CLN 

In the example below, registered KernelCare installations with orange exclamation mark do not 
have the latest patches installed. 

Monitoring 

https://www.nagios.org/
https://www.zabbix.com/


 

 

 

Monitoring via the KernelCare.ePortal Admin Page 

If you are using a KernelCare.ePortal server, the administration page (http://ePortal IP/admin) 

can be used to filter on key ID.  

Monitoring on the Command Line 

You can check whether the latest patch has been applied with this command. 

/usr/bin/kcarectl --check 



 

 

Monitoring with the KernelCare API 

KernelCare has a REST API that can be used to extract status information for monitoring 

purposes. The syntax is as follows. 

 For key-based licenses:  

https://cln.cloudlinux.com/api/kcare/nagios/{key_id} 

 For IP-based licenses (resellers):  

https://cln.cloudlinux.com/api/kcare/nagios-res/{login}/{token} 

 For ePortal patch distribution: 

http://ePortal IP/admin/api/kcare/nagios/{key_id} 

 

A description of the CloudLinux REST API is at 

https://cln.cloudlinux.com/clweb/downloads/cloudlinux-rest-api.pdf 

Nagios/Zabbix Integration 

Enterprise users of Nagios or Zabbix can use the script at 

http://patches.kernelcare.com/downloads/nagios/check_kcare. 

This script is a command-line utility that produces output compatible with the above two vendor 

tools. It classifies patches as one of: 

 Up to date 

 Out of date 

 Unsupported 

 Inactive 

The script only reports servers with a KernelCare key (registered at CLN or KernelCare.ePortal) 

and all servers within partner accounts (registered at CLN). 

An example of the Service Status view using the KernelCare status checker script in Nagios is 

shown below.  

https://cln.cloudlinux.com/clweb/downloads/cloudlinux-rest-api.pdf
http://patches.kernelcare.com/downloads/nagios/check_kcare


 

 

To use the check_kcare script:  

1. Download it from http://patches.kernelcare.com/downloads/nagios/check_kcare 

2. Copy it to: 
• /usr/lib64/nagios/plugins/ (for Nagios) 
• /usr/lib/zabbix/externalscripts/ (for Zabbix) 

3. Make it executable. 
 

 NOTE: A template for Zabbix is at      

http://patches.kernelcare.com/downloads/nagios/kcare_zabbix_template.xml 

 

 

 

 

 

Because KernelCare patches the kernel directly in memory, the official patch identification does 

not change. In other words, neither the output of uname -r nor the contents of the file 

/proc/version change when patched. 

We do this because glibc and other libraries relying on the kernel ABI (Application Binary 

Interface) must know the exact version of the kernel. 

Although this approach provides the highest levels of stability and compatibility for servers, it can 

cause some security scanners to report the active kernel as 'out of date'. 

To prevent such reports, KernelCare has a command that returns the effective version of the 

kernel. 

kcare-uname -r 

 

 

 

 

 

 

 

Commonly used security scanners can obtain the list of CVEs patched by KernelCare even though 

the output of uname -r stays unchanged. KernelCare agent can manipulate the kernel version as 

reported by DEB- and RPM-based distributions. The kernel package version output can be 

overridden by setting LD_PRELOAD. It changes the information shown by the package manager 

similar to: 

[centos@host ~]$ rpm -q kernel-headers 

kernel-headers-3.10.0-693.17.1.el7.x86_64 

[centos@host ~]$ LD_PRELOAD=/usr/libexec/kcare/kpatch_package.so rpm -q 

Security Compliance 

Security Scanner 
Interface 

http://patches.kernelcare.com/downloads/nagios/check_kcare
http://patches.kernelcare.com/downloads/nagios/kcare_zabbix_template.xml


 

 

kernel-headers-3.10.0-957.21.3.el7.x86_64 

Scanner interface changes system functions to rely on kcarectl --uname output thus making 

KernelCare “effective version” come into play. This behavior applies only to a single system user 

that should be used to run a security scan over SSH. 

 

Enabling KernelCare Scanner Interface 

 
The installation command looks like: 

curl -s -L https://kernelcare.com/installer | KCARE_SCANNER_USER=username bash 

 

To update an existing package, run (for RPM-based systems): 

KCARE_SCANNER_USER=username yum update kernelcare 

or (for DEB-based): 

KCARE_SCANNER_USER=username apt-get update kernelcare 

 

Where username is the user which will be used to run scanners on the server. Start a new SSH 

session for KCARE_SCANNER_USER and apply KernelCare patches (kcarectl --update). The 

output of installed kernel version as seen by the system package manager (RPM/DPKG) will 

change to the “effective version” provided by KernelCare. 

New security scan results should not display any kernel-related CVEs that are covered by 

KernelCare binary patches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

This Technical White Paper covered the key points in installing and configuring KernelCare. It also 

mentioned the key requirements for Linux kernel patch management: 

 Automatic installation of patches 

 Custom patch configurations and manual overrides 

 Choice of patch repositories 

 Integration with automation and monitoring utilities 

 

 With KernelCare.ePortal Without KernalCare.ePortal 

Update Server Location On-premises http://patches.kernelcare.com 

License Server Location On-premises https://cln.cloudlinux.com 

Installation Instructions ePortal Server KC agent KC agent 

Costs Per license Per license 

Patch Rollout flexibility ePortal Feeds Sticky patches 

Multiple Environments Yes (via ePortal feeds) Yes (via Sticky patches) 

Monitoring ePortal, API (Nagios, Zabbix) CLN, API (Nagios, Zabbix) 

 

Useful links 

 KernelCare website: https://www.kernelcare.com 

 KernelCare Blog: https://www.blog.kernelcare.com 

 KernelCare Patch Server: http://patches.kernelcare.com 

 KernelCare documentation: http://docs.kernelcare.com 

 CloudLinux Network - CLN (Billing Portal): https://cln.cloudlinux.com 

 CloudLinux 24/7 online support system: https://cloudlinux.zendesk.com 

Conclusion 

http://patches.kernelcare.com/
https://cln.cloudlinux.com/
http://docs.kernelcare.com/index.html?installation2.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?managing_servers.htm
http://docs.kernelcare.com/index.html?sticky_patches.htm
https://www.kernelcare.com/
https://www.kernelcare.com/
http://patches.kernelcare.com/
http://patches.kernelcare.com/
http://docs.kernelcare.com/
http://docs.kernelcare.com/
https://cln.cloudlinux.com/
https://cloudlinux.zendesk.com/

	What is KernelCare?
	Why is it needed?
	About KernelCare

	Patching Servers
	Example 1: Direct Internet Access
	Example 3: No Internet Access (local ePortal)
	Automated Deployment
	Custom Patch Feeds
	Disabling Auto-Update
	Test and Delayed Patch Feeds
	Monitoring via the CLN
	Monitoring via the KernelCare.ePortal Admin Page
	Monitoring on the Command Line
	Monitoring with the KernelCare API
	Nagios/Zabbix Integration
	Useful links


